Molecular Imprinting Technology in Quartz Crystal Microbalance (QCM) Sensors
نویسندگان
چکیده
منابع مشابه
Molecular Imprinting Technology in Quartz Crystal Microbalance (QCM) Sensors
Molecularly imprinted polymers (MIPs) as artificial antibodies have received considerable scientific attention in the past years in the field of (bio)sensors since they have unique features that distinguish them from natural antibodies such as robustness, multiple binding sites, low cost, facile preparation and high stability under extreme operation conditions (higher pH and temperature values,...
متن کاملRespiratory Monitoring by Porphyrin Modified Quartz Crystal Microbalance Sensors
A respiratory monitoring system based on a quartz crystal microbalance (QCM) sensor with a functional film was designed and investigated. Porphyrins 5,10,15,20-tetrakis-(4-sulfophenyl)-21H,23H-porphine (TSPP) and 5,10,15,20-tetrakis-(4-sulfophenyl)-21H, 23H-porphine manganese (III) chloride (MnTSPP) used as sensitive elements were assembled with a poly(diallyldimethyl ammonium chloride) (PDDA)....
متن کاملDissipation in films of adsorbed nanospheres studied by quartz crystal microbalance (QCM).
The quartz crystal microbalance (QCM) has become a popular method to study the formation of surface-confined films that consist of discrete biomolecular objects--such as proteins, phospholipid vesicles, virus particles--in liquids. The quantitative interpretation of QCM data--frequency and bandwidth (or, equivalently, dissipation) shifts--obtained with such films is limited by the lack of under...
متن کاملSurface Modification Enhanced Reflection Intensity of Quartz Crystal Microbalance Sensors upon Molecular Adsorption.
Molecular adsorption on a sensing surface involves molecule-substrate and molecule-molecule interactions. Combining optical systems and a quartz crystal microbalance (QCM) on the same sensing surface allows the quantification of such interactions and reveals the physicochemical properties of the adsorbed molecules. However, low sensitivity of the current reflection-based techniques compared to ...
متن کاملThe use of quartz crystal microbalance with dissipation (QCM-D) for studying nanoparticle-induced platelet aggregation
Interactions between blood platelets and nanoparticles have both pharmacological and toxicological significance and may lead to platelet activation and aggregation. Platelet aggregation is usually studied using light aggregometer that neither mimics the conditions found in human microvasculature nor detects microaggregates. A new method for the measurement of platelet microaggregation under flo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors
سال: 2017
ISSN: 1424-8220
DOI: 10.3390/s17030454